

OXIDATION OF *cis*-DIALKYLCOBALT(III) COMPLEXES BY OXYGEN.

ACTIVATION OF OXYGEN BY PERCHLORIC ACID

Shunichi FUKUZUMI, Kunio ISHIKAWA, and Toshio TANAKA*

Department of Applied Chemistry, Faculty of Engineering,
Osaka University, Suita, Osaka 565

The effects of protons on the reactions of *cis*-dialkylcobalt(III) complexes, cis - $[R_2Co(bpy)_2]ClO_4$ ($R = Me, Et, PhCH_2$; bpy = 2,2'-bipyridine), with oxygen are reported. Oxygen is shown to be activated in the presence of perchloric acid by forming hydroperoxonium ion which has a much stronger oxidizing ability than oxygen.

Oxidation of transition-metal alkyls by oxygen has usually been avoided carefully in their handling and thus, little is known about the oxidation processes.¹⁾ However, the reactions of oxygen with organometallic compounds have recently attracted growing attention,²⁾ although some transition-metal alkyls are stable towards oxygen. Generally, oxygen is an unreactive molecule towards singlet organic compounds because of the triplet ground state and the low one-electron reduction potential.³⁾ The two-electron reduction of oxygen in the presence of acids, however, is energetically much more favorable than the one-electron reduction in the absence of protons.⁴⁾ Therefore, the presence of acid is expected to enhance the oxidizing ability of oxygen significantly. In this study, we report the first example of acid promoted reactions of oxygen with transition-metal alkyls which are stable towards oxygen in the absence of acids.

The *cis*-dialkylcobalt(III) complexes, cis - $[R_2Co(bpy)_2]ClO_4$ ($R = Me, Et, PhCH_2$; bpy = 2,2'-bipyridine), are stable towards oxygen in acetonitrile ($MeCN$) at 298 K. However, cis - $[(PhCH_2)_2Co(bpy)_2]^+$ reacts readily with oxygen in the presence of perchloric acid ($HCLO_4$) in CD_3CN even at 273 K to yield benzyl hydroperoxide which decomposes to produce benzaldehyde as a final oxidation product (Fig. 1).⁵⁾ The rate of the decay of

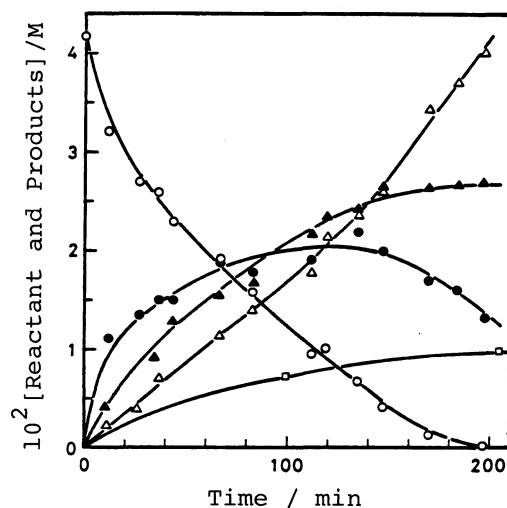


Fig. 1. Oxidation of cis - $[(PhCH_2)_2Co(bpy)_2]^+$ by oxygen in the presence of $HCLO_4$ (0.12 M; 1 M = 1 mol dm^{-3}) in CD_3CN at 273 K, monitored by 1H nmr; cis - $[(PhCH_2)_2Co(bpy)_2]^+$ (\circ), $PhCH_2-OOH$ (\bullet), $PhCHO$ (\triangle), $[PhCH_2Co(bpy)_2]^{2+}$ (\blacktriangle), $[Co(bpy)_3]^{2+}$ (\square).

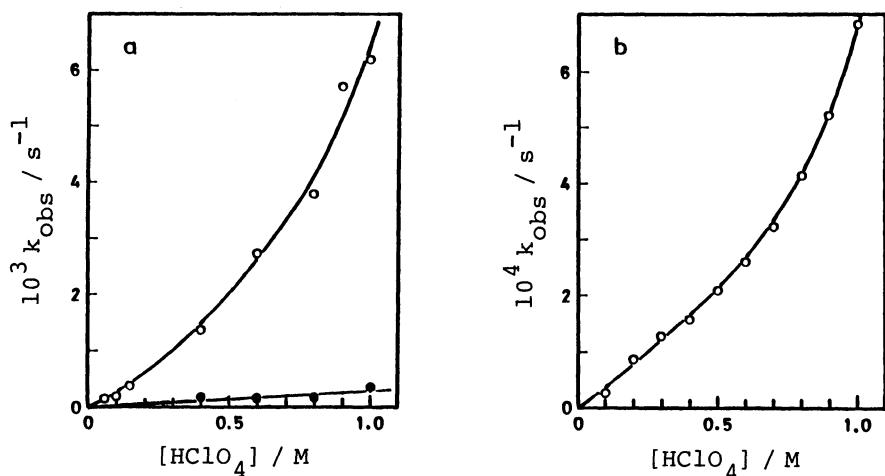
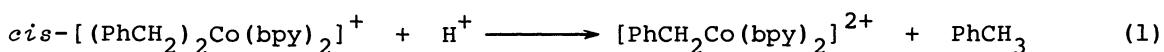
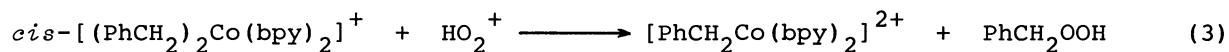
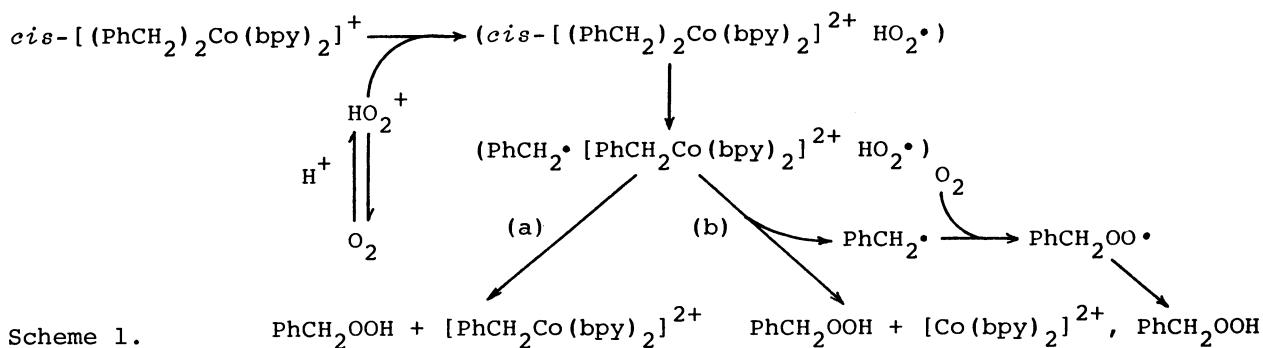



Fig. 2. (a) Dependence of the observed pseudo-first-order rate constant k_{obs} on the HClO_4 concentration for the oxidation of $\text{cis-}[(\text{PhCH}_2)_2\text{Co}(\text{bpy})_2]^+$ by oxygen in the presence of HClO_4 (○) and for the reaction of $\text{cis-}[(\text{PhCH}_2)_2\text{Co}(\text{bpy})_2]^+$ with HClO_4 in the absence of oxygen (●) in MeCN at 298 K. (b) Dependence of k_{obs} on $[\text{HClO}_4]$ for the one-electron oxidation of 1,1'-dimethylferrocene (Me_2Fc) by oxygen in the presence of HClO_4 in MeCN at 298 K.

$\text{cis-}[(\text{PhCH}_2)_2\text{Co}(\text{bpy})_2]^+$ in an oxygen saturated MeCN solution in the presence of HClO_4 was first order with respect to $\text{cis-}[(\text{PhCH}_2)_2\text{Co}(\text{bpy})_2]^+$ and the pseudo-first-order rate constant k_{obs} increases with increasing the HClO_4 concentration as shown by the open circles in Fig. 2a. In the absence of oxygen, the cobalt-benzyl bond of $\text{cis-}[(\text{PhCH}_2)_2\text{Co}(\text{bpy})_2]^+$ was cleaved by the electrophilic attack of proton to yield $[\text{PhCH}_2\text{Co}(\text{bpy})_2]^{2+}$ and toluene (Eq. 1),⁶⁾ although the rate of the

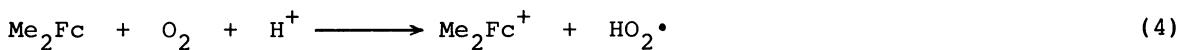


electrophilic cleavage reaction is much slower than the rate of oxidation of $\text{cis-}[(\text{PhCH}_2)_2\text{Co}(\text{bpy})_2]^+$ by oxygen at the same concentration of HClO_4 (Fig. 2a).


In the presence of acids, the reduction potential of oxygen is given by Eq. 2,

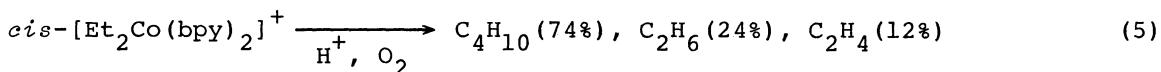
$$E(\text{O}_2/\text{HO}_2^\bullet) = E^0(\text{HO}_2^+/\text{HO}_2^\bullet) + \frac{2.3RT}{F} \log \left(\frac{K_{\text{red}} + [\text{H}^+]}{K_{\text{ox}} + [\text{H}^+]} \right) \quad (2)$$

where K_{ox} and K_{red} are the acid dissociation constants of hydroperoxonium ion (HO_2^+) and hydroperoxyl radical (HO_2^\bullet), respectively, and $E^0(\text{HO}_2^+/\text{HO}_2^\bullet)$ is equal to $E^0(\text{O}_2/\text{O}_2^-) + (2.3RT/F)(pK_{\text{red}} - pK_{\text{ox}})$.⁷⁾ According to Eq. 2, the reduction potential of oxygen in the presence of acids, $E(\text{O}_2/\text{HO}_2^\bullet)$, may be shifted to the positive direction with increasing the acid concentration compared with that in the absence of acid $E^0(\text{O}_2/\text{O}_2^-)$ owing to the formation of the protonated oxygen, i.e., HO_2^+ when $\text{pH} < pK_{\text{red}}$ ($= 4.69$), and the one-electron reduction process gives way to an apparent irreversible two-electron reduction process.⁴⁾ Thus, in the reaction of $\text{cis-}[(\text{PhCH}_2)_2\text{Co}(\text{bpy})_2]^+$ with oxygen in the presence of HClO_4 , the cobalt-benzyl bond may be cleaved by the electrophilic attack of hydroperoxonium ion to yield benzyl hydroperoxide and $[\text{PhCH}_2\text{Co}(\text{bpy})_2]^{2+}$ (Eq. 3). However, the amount of



$[PhCH_2Co(bpy)_2]^{2+}$ formed is less than the initial amount of $cis-[(PhCH_2)_2Co(bpy)_2]^+$ which is less than the total amount of oxidation products ($PhCH_2OOH$ and $PhCHO$) as shown in Fig. 1. Then, there may be a different pathway to cleave both the cobalt-benzyl bonds by HO_2^+ , which accounts for the stoichiometry observed in Fig. 1. The most plausible reaction pathway is shown in Scheme 1, where electron transfer

from $cis-[(PhCH_2)_2Co(bpy)_2]^+$ to HO_2^+ may occur to produce $cis-[(PhCH_2)_2Co(bpy)_2]^{2+}$ which may readily dissociate to give $PhCH_2\cdot$ and $[PhCH_2Co(bpy)_2]^{2+}$, followed by either (a) the recombination of radicals between $PhCH_2\cdot$ and $HO_2\cdot$ to yield $PhCH_2OOH$ or (b) the attack of $HO_2\cdot$ on $[PhCH_2Co(bpy)_2]^{2+}$ resulting in the formation of $PhCH_2OOH$ and $[Co(bpy)_2]^{2+}$ as well as $PhCH_2\cdot$ which may be trapped by oxygen immediately to give benzylperoxy radical, yielding additional benzyl hydroperoxide by the abstraction of hydrogen from a solvent. At present, the former process (a) is indistinguishable from the electrophilic pathway (Eq. 3). The formation of Co^{II} species was confirmed by the 1H nmr spectrum where about one-third of the 2,2'-bipyridine ligand of the reactant was detected as the form $[Co(bpy)_3]^{2+}$ which may be produced from $[Co(bpy)_2]^{2+}$,⁸⁾ and the rest as $[PhCH_2Co(bpy)_2]^{2+}$, which agrees with the stoichiometry observed in Fig. 1. The electron transfer process from $cis-[(PhCH_2)_2Co(bpy)_2]^+$ to HO_2^+ may be energetically possible since electron transfer from $cis-[(R_2Co(bpy)_2]^+$ to *p*-benzoquinone derivatives (Q), whose reduction potentials are similar to that of oxygen ($E^0(O_2/O_2^-) = -0.8$ V vs. SCE),⁴⁾ is known to occur in the presence of $HClO_4$ when Q is partially protonated to form QH^+ which has a much stronger oxidizing ability than Q.⁹⁾


The enhancement of the one-electron oxidation process by oxygen in the presence of $HClO_4$ is well demonstrated in the electron transfer reaction from 1,1'-dimethylferrocene (Me_2Fc) to oxygen in the presence of $HClO_4$ (Eq. 4) as shown

in Fig. 2b, where the dependence of k_{obs} on the $HClO_4$ concentration is similar to that observed in the oxidation of $cis-[(PhCH_2)_2Co(bpy)_2]^+$ by oxygen in the presence of $HClO_4$ in MeCN (the open circles in Fig. 2a).

The reaction of $cis-[(Et_2Co(bpy)_2]^+$ with oxygen in the presence of $HClO_4$ gave significant amount of the coupling product butane, as observed in the acid catalysed electron transfer reactions from $cis-[(Et_2Co(bpy)_2]^+$ to Q,⁹⁾ as well as ethane

and ethylene which may be produced by the electrophilic cleavage reaction by H^+ (Eq. 5). In this case, the reductive elimination from cis -[Et₂Co(bpy)₂]²⁺ to

yield butane upon the one-electron oxidation by oxygen in the presence of $HCLO_4$ may be much faster than the reaction with $HO_2\cdot$ in contrast to the case of cis -[(PhCH₂)₂Co(bpy)₂]⁺ (Scheme 1). Such a difference may be ascribed to a much longer lifetime of cis -[(PhCH₂)₂Co(bpy)₂]²⁺ than cis -[Et₂Co(bpy)₂]²⁺.¹⁰ A similar reductive coupling of the alkyl ligands of transition-metal alkyls is known to be induced by electron transfer reactions from transition-metal alkyls to oxygen.¹¹

In the case of cis -[Me₂Co(bpy)₂]⁺, the rate of the electrophilic cleavage reaction by H^+ is the fastest among cis -[R₂Co(bpy)₂]⁺ and no change in the products (methane and MeCo(bpy)₂)²⁺⁶ or the rate has been observed between the reactions in the presence and absence of oxygen.

References

- 1) J. K. Kochi, "Organometallic Mechanisms and Catalysis," Academic Press, New York (1978), pp. 517-522.
- 2) D. Astruc, J.-R. Hamon, E. Román, and P. Michaud, *J. Am. Chem. Soc.*, 103, 7502 (1981); A. M. Madonik and D. Astruc, *ibid.*, 106, 2437 (1984); N. A. Vol'kenau and V. A. Petrakova, *J. Organomet. Chem.*, 233, C7 (1982); C. Bied-Charreton and A. Gaudemer, *ibid.*, 124, 299 (1977); K. Jacob, K.-H. Thiele and B. Mohai, *Z. Anorg. Allg. Chem.*, 511, 89 (1984); A. Nishinaga, K. Nishizawa, Y. Nakayama, and T. Matsuura, *Tetrahedron Lett.*, 1977, 85.
- 3) R. Bonnett, *Essays in Biochemistry*, 17, 1 (1981).
- 4) D. T. Sawyer and J. S. Valentine, *Acc. Chem. Res.*, 14, 393 (1981); D.-H. Chin, G. Chiericato, Jr., E. J. Nanni, Jr., and D. T. Sawyer, *J. Am. Chem. Soc.*, 104, 1296 (1982); E. Ruff, *Chem. Soc. Rev.*, 6, 195 (1977).
- 5) In order to confirm the formation of benzyl hydroperoxide, the authentic sample was prepared by the addition of benzylmagnesium chloride to oxygen saturated ether at -70 °C; C. Walling and S. A. Bucker, *J. Am. Chem. Soc.*, 77, 6032 (1955).
- 6) Formation of equal amounts of [RCo(bpy)₂]²⁺ and RH (R = PhCH₂ and Me) was confirmed by ¹H nmr and glc, respectively. ¹H nmr (CD₃CN) δ(ppm): CH₂, 2.90 (2H, s) for [PhCH₂Co(bpy)₂]²⁺; CH₃, 3.37 (3H, s) for [MeCo(bpy)₂]²⁺.
- 7) D. Meisel and G. Czapski, *J. Phys. Chem.*, 79, 1503 (1975).
- 8) S. Fukuzumi, K. Ishikawa, and T. Tanaka, *Chem. Lett.*, 1985, 1355.
- 9) S. Fukuzumi, K. Ishikawa, and T. Tanaka, *Nippon Kagaku Kaishi*, 1985, 62.
- 10) S. Fukuzumi, K. Ishikawa, and T. Tanaka, *J. Chem. Soc., Dalton Trans.*, 1985, 899.
- 11) D. G. Morrell and J. K. Kochi, *J. Am. Chem. Soc.*, 97, 7262 (1975); S. Komiya, T. A. Albright, R. Hoffman, and J. K. Kochi, *Ibid.*, 99, 8440 (1977); W. Wada, K. Kusabe, and K. Oguro, *Inorg. Chem.*, 16, 446 (1977).

(Received September 11, 1985)